Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces
نویسنده
چکیده
In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V) characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.
منابع مشابه
Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method
Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...
متن کاملModulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric Field
In this study, spectroscopic properties of the single-walled boron-nitride nanotube (SWBNNT) –a semiconductor channel in molecular diodes and molecular transistors–have been investigated under field-free and various applied electric fields by first principle methods.Our analysis shows that increasing the electric field in boron-nitride nanotube (BNNT) decreases the Highest Occupied Crystal Orbi...
متن کاملELECTROPHORETIC DEPOSITION OF PALLADIUM NANOPARTICLES ON InP FOR HYDROGEN SENSORS
Semiconducting, insulating, and metallic nanoparticles have attracted considerable interest due to their size-dependent, quantum confinement characteristics, which make them attractive for a wide range of optical, magnetic, and electronic devices. We report on the deposition of Pd nanoparticles prepared with reverse micellae of water/AOT/isooctane solution on the surface of n-type InP substrate...
متن کاملNitride Semiconductor Light-Emitting Diodes (LEDs). Woodhead Publishing Series in Electronic and Optical Materials
Description: The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and ...
متن کاملPLASMA-EDGE DIAGNOSTICS BASED ON Pd-MOS DIODES
Pd metal-oxide-semiconductor (MOS) devices can be used to detect energetic hydrogen atoms. H isotopes implanted into a Pd-MOS diode quickly diffuse through the Pd layer and are accommodated at available Pd-SiO, interface sites, causing an increase in the leakage current through the device. We find that a diode’s response to energetic hydrogen is rapid, sensitive, dosimetric, and reproducible. P...
متن کامل